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Statistical mechanics of neocortical interactions: Canonical momenta indicators
of electroencephalography

Lester Ingber*
Lester Ingber Research, P.O. Box 857, McLean, Virginia 22101

~Received 31 October 1996; revised manuscript received 23 December 1996!

A series of papers has developed a statistical mechanics of neocortical interactions~SMNI!, deriving aggre-
gate behavior of experimentally observed columns of neurons from statistical electrical-chemical properties of
synaptic interactions. While not useful to yield insights at the single neuron level, SMNI has demonstrated its
capability in describing large-scale properties of short-term memory and electroencephalographic~EEG! sys-
tematics. The necessity of including nonlinear and stochastic structures in this development has been stressed.
Sets of EEG and evoked potential data were fit, collected to investigate genetic predispositions to alcoholism
and to extract brain ‘‘signatures’’ of short-term memory. Adaptive simulated annealing~ASA!, a global
optimization algorithm, was used to perform maximum likelihood fits of Lagrangians defined by path integrals
of multivariate conditional probabilities. Canonical momenta indicators~CMI! are thereby derived for an
individual’s EEG data. The CMI give better signal recognition than the raw data, and can be used to advantage
as correlates of behavioral states. These results give strong quantitative support for an accurate intuitive
picture, portraying neocortical interactions as having common algebraic or physics mechanisms that scale
across quite disparate spatial scales and functional or behavioral phenomena, i.e., describing interactions
among neurons, columns of neurons, and regional masses of neurons.@S1063-651X~97!12004-9#

PACS number~s!: 87.10.1e, 05.40.1j, 02.50.2r, 02.70.2c
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I. INTRODUCTION

A model of statistical mechanics of neocortical intera
tions ~SMNI! has been developed@1–20#, describing large-
scale neocortical activity on scales of mm to cm as measu
by scalp electroencephalography~EEG!, with an audit trail
back to minicolumnar interactions among neurons. There
several aspects of this modeling that should be further inv
tigated: to explore the robustness of the model, the rang
experimental paradigms to which it is applicable, and furt
development that can increase its spatial resolution of E

The underlying mathematical physics used to deve
SMNI gives rise to a natural coordinate system faithful
nonlinear multivariate sets of potential data, such as m
sured by multielectrode EEG, canonical momenta indica
~CMI! @20–22#. Recent papers in finance@21,22# and in EEG
systems@20# have demonstrated that CMI give enhanced s
nal resolutions over raw data.

The basic philosophy of SMNI is that good physical mo
els of complex systems, often detailed by variables not
rectly measurable in many experimental paradigms, sho
offer superior descriptions of empirical data beyond t
available from black-box statistical descriptions of such da
For example, good nonlinear models often offer sound
proaches to relatively deeper understandings of these
tems in terms of synergies of subsystems at finer spa
temporal scales.

In this context, a generic mesoscopic neural netw
~MNN! has been developed for diffusion-type systems us
a confluence of techniques drawn from the SMNI, mod
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methods of functional stochastic calculus defining nonlin
Lagrangians, adaptive simulated annealing~ASA! @23#, and
parallel-processing computation, to develop a generic non
ear stochastic MNN@14,19#. MNN increases the resolution
of SMNI to minicolumnar interactions within and betwee
neocortical regions, a scale that overlaps with other stud
of neural systems, e.g., artificial neural networks~ANN!.

In order to interface the algebra presented by SMNI w
experimental data, several codes have been developed. A
tool is ASA, a global optimizationC-language code@23–27#.
Over the years, this code has evolved to a high degre
robustness across many disciplines. However, there are
100 options available for tuning this code; this is as expec
for any single global optimization code applicable to ma
classes of nonlinear systems, systems which typically
nontypical.

Section II gives the background used to develop SM
and ASA for the present study. The Appendix gives mo
detail on ASA relevant to this paper. Section III gives t
mathematical development required for this study. Sect
IV describes the procedures used. Section V presents con
sions.

II. BACKGROUND

A. EEG

The SMNI approach develops mesoscopic scales of n
ronal interactions at columnar levels of hundreds of neur
from the statistical mechanics of relatively microscopic
teractions at neuronal and synaptic scales, poised to s
relatively macroscopic dynamics at regional scales, as m
sured by scalp electroencephalography~EEG!. Relevant ex-
perimental confirmation is discussed in the SMNI papers
the mesoscopic scales, as well as at macroscopic scale
4578 © 1997 The American Physical Society
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scalp EEG. The derived firings of columnar activity, cons
ered as order parameters of the mesoscopic system, de
multiple attractors, which illuminate attractors that may
present in the macroscopic regional dynamics of the neo
tex. SMNI proposes that models to be fitted to the data
clude models of activity under each electrode, e.g., due
short-ranged neuronal fibers, as well as models of acti
across electrodes, e.g., due to long-ranged fibers. Thes
fluences can be disentangled by SMNI fits.

The SMNI approach is complementary to other metho
of studying nonlinear neocortical dynamics at macrosco
scales. For example, EEG and magnetoencephalogr
~MEG! data have been expanded in a series of spatial p
cipal components, a Karhunen-Loeve expansion. The co
cients in such expansions are identified as order param
that characterize phase changes in cognitive studies@28,29#
and epileptic seizures@30,31#. However, the SMNI CMI may
be considered in a similar context, as providing a natu
coordinate system that can be sensitive to experimental d
without assuming averages over stochastic parts of the
tem that may contain important information.

Theoretical studies of the neocortical medium have
volved local circuits with postsynaptic potential delays@32–
35#, global studies in which finite velocity of action potenti
and periodic boundary conditions are important@36–39#, and
nonlinear nonequilibrium SMNI. The local and the glob
theories combine naturally to form a single theory in whi
control parameters effect changes between more local
more global dynamic behavior@39,40#, in a manner some
what analogous to localized and extended wave-func
states in disordered solids.

Plausible connections between the multiple-scale stat
cal theory and the more phenomenological global the
have been proposed@12#. Experimental studies of neocortica
dynamics with EEG include maps of magnitude distributi
over the scalp@37,41#, standard Fourier analyses of EE
time series@37#, and estimates of correlation dimensio
@42,43#. Other studies have emphasized that many E
states are accurately described by a few coherent sp
modes exhibiting complex temporal behavior@28–31,37,39#.
These modes are the order parameters at macroscopic s
that underpin the phase changes associated with chang
physiological state.

For extracranial EEG, it is clear that spatial resolutio
i.e., the ability to distinguish between two dipole sources
their distance decreases, is different from dipole localizat
i.e., the ability to locate a single dipole@39#. The develop-
ment of methods to improve the spatial resolution of EE
has made it more practical to study spatial structure.
example, high resolution methods provide apparent spa
resolution in the 2–3 cm range@44#. Dipole resolution may
be as good as several mm@45#. Some algorithms calculat
the ~generally nonunique! inverse problem of determining
cortical sources that are weighted or filtered by volume c
ductivities of concentric spheres encompassing the br
cerebrospinal fluid, skull, and scalp. A straightforward a
proach is to calculate the surface Laplacian from spline fit
the scalp potential distribution, yielding estimates similar
those obtained using concentric spheres models of the
@44#. Other measuring techniques, e.g., MEG, can prov
complementary information. These methods have th
-
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strengths and weaknesses at various spatial-temporal
quencies.

These source localization methods typically do not
clude in their models the synergistic contributions fro
short-ranged columnar firings of mm spatial extent and fr
long-ranged fibers spanning cm spatial extent. The C
study presented here models these synergistic short-ra
and long-ranged interactions. This is elaborated on in
conclusion.

B. Short-term memory

The development of SMNI in the context of short-ter
memory~STM! tasks leads naturally to the identification
measured electric scalp potentials as arising from excita
and inhibitory short-ranged and excitatory long-ranged fib
as they contribute to minicolumnar interactions@12,13#.
Therefore, the SMNI CMI are most appropriately calculat
in the context of STM experimental paradigms. It has be
demonstrated that EEG data from such paradigms can b
using only physical synaptic and neuronal parameters tha
within experimentally observed ranges@13,20#.

The SMNI calculations are of minicolumnar interactio
among hundreds of neurons, within a macrocolumnar ex
of hundreds of thousands of neurons. Such interactions
place on time scales of severalt, wheret is on the order of
10 msec~of the order of time constants of cortical pyramid
cells!. This also is the observed time scale of the dynamics
STM. SMNI hypothesizes that columnar interactions with
and/or between regions containing many millions of neuro
are responsible for these phenomena at time scales of se
seconds. That is, the nonlinear evolution at finer tempo
scales gives a base support for the phenomena observ
the coarser temporal scales, e.g., by establishing mesosc
attractors at many macrocolumnar spatial locations to p
cess patterns in larger regions.

SMNI has presented a model of STM, to the extent tha
offers stochastic bounds for this phenomena during focu
selective attention@4,6,15,46–48#, transpiring on the order o
tenths of a second to seconds, limited to the retention
762 items@49#. These constraints exist even for apparen
exceptional memory performers who, while they may be
pable of more efficient encoding and retrieval of STM, a
while they may be more efficient in ‘‘chunking’’ larger pa
terns of information into single items, nevertheless, are l
ited to a STM capacity of 762 items@50#. Mechanisms for
various STM phenomena have been proposed across m
spatial scales@51#. This ‘‘rule’’ is verified for acoustical
STM, as well as for visual or semantic STM, which typical
require longer times for rehearsal in an hypothesized art
latory loop of individual items, with a capacity that appea
to be limited to 462 @52#. SMNI has detailed these con
straints in models of auditory and visual cortex@4,6,15,16#.

Another interesting phenomenon of STM capacity e
plained by SMNI is the primacy versus recency effect
STM serial processing@6#, wherein first-learned items ar
recalled most error free, with last-learned items still mo
error free than those in the middle@53#. The basic assump
tion being made is that a pattern of neuronal firing that p
sists for manyt cycles is a candidate to store the ‘‘memory
of activity that gave rise to this pattern. If several firing pa
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4580 55LESTER INGBER
terns can simultaneously exist, then there is the capabilit
storing several memories. The short-time probability dis
bution derived for the neocortex is the primary tool to se
such firing patterns. The deepest minima are more likely
cessed than the others of this probability distribution, a
these valleys are sharper than the others. That is, they
more readily accessed and sustain their patterns against
tuations more accurately than the others. The more re
memories or newer patterns may be presumed to be t
having synaptic parameters more recently tuned and/or m
actively rehearsed.

It has been noted that experimental data on velocities
propagation of long-ranged fibers@37,39# and derived veloci-
ties of propagation of information across local minicolumn
interactions@2# yield comparable times scales of interactio
across minicolumns of tenths of a second. Therefore, s
phenomena as STM likely are inextricably dependent on
teractions at local and global scales.

1. SMNI and ADP

A proposal has been advanced that STM is processe
information coded in approximately 40 Hz~approximately
2.5 foldings oft) bursts per stored memory, permitting up
seven such memories to be processed serially within si
waves of lower frequencies on the order of 5 to 12 Hz@54#.
To account for the observed duration of STM, they propo
that observed after-depolarization~ADP! at synaptic sites,
affected by the action of relatively long-time acting neur
modulators, e.g., acetylcholine and serotonin, acts to re
larly ‘‘refresh’’ the stored memories in subsequent oscil
tory cycles. A recent study of the action of neuromodulat
in the neocortex supports the premise of their effects
broad spatial and temporal scales@55#, but the ADP model is
more specific in its proposed spatial and temporal influen

SMNI does not detail any specific synaptic or neuro
mechanisms that might refresh these most likely state
reinforce multiple short-term memories@18#. However, the
calculated evolution of states is consistent with the obse
tion that an oscillatory subcycle of 40 Hz may be the b
minimal threshold of self-sustaining minicolumnar firing
before they begin to degrade@16#.

The mechanism of ADP details a specific synaptic mec
nism that, when coupled with additional proposals of ne
ronal oscillatory cycles of 5–12 Hz and oscillatory subcyc
of 40 Hz, can sustain these memories for longer durations
the order of seconds. By itself, ADP does not provide a c
straint such as the 762 rule. The ADP approach does n
address the observed random access phenomena of
memories, the 462 rule, the primacy versus recency rule,
the influence of STM in observed EEG patterns.

SMNI and ADP models are complementary to the und
standing of STM. MNN can be used to overlap the spa
scales studied by the SMNI with the finer spatial scales ty
cally studied by other relatively more microscopic neu
networks. At this scale, such models as ADP are candid
for providing an extended duration of firing patterns with
the microscopic networks.

2. PATHINT

A path-integralC-language code,PATHINT, calculates the
long-time probability distribution from the Lagrangian, e.g
of
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as fit by the ASA code. A robust and accurate histogra
based~non-Monte Carlo! path-integral algorithm to calculat
the long-time probability distribution had been developed
handle nonlinear Lagrangians@56–58#, which was extended
to two-dimensional problems@59#. PATHINT was developed
for use in arbitrary dimensions, with additional code
handle general Neumann and Dirichlet conditions, as wel
the possibility of including time-dependent potentials, drif
and diffusions. The results of usingPATHINT to determine the
evolution of the attractors of STM give overall results co
sistent with previous calculations@15,16#.

C. ASA

In order to maintain some audit trail from large-scale
gional activity back to mesoscopic columnar dynamics,
sirable for both academic interest as well as practical sig
enhancement, as few approximations as possible are mad
SMNI in developing synaptic interactions up to the level
regional activity as measured by scalp EEG. This presen
formidable multivariate nonlinear nonequilibrium distribu
tion as a model of EEG dynamics, a concept considered t
quite tentative by research panels as late as 1990, until it
demonstrated how fits to EEG data could be implemen
@13#.

In order to fit such distributions to real data, ASA h
been developed, a global optimization technique, a supe
variant of simulated annealing@24#. This was tested using
EEG data in 1991@13#, using an early and not as flexibl
version of ASA, very fast reannealing~VFSR! @24#. Here,
this is tested on more refined EEG using more sensitive C
to portray results of the fits@20#.

ASA @23# fits short-time probability distributions to ob
served data, using a maximum likelihood technique on
Lagrangian. This algorithm has been developed to fit
served data to a theoretical cost function over
D-dimensional parameter space@24#, adapting for varying
sensitivities of parameters during the fit. The Appendix co
tains details of ASA relevant to its use in this paper.

D. Complementary research

1. Chaos

Given the context of studies in complex nonlinear syste
@60#, the question can be asked: What if EEG has cha
mechanisms that overshadow the above stochastic cons
ations? The real issue is whether the scatter in data ca
distinguished between being due to noise or chaos@61#. In
this regard, several studies have been proposed with re
to comparing chaos to simple filtered~colored! noise@60,62#.
Since the existence of multiplicative noise in neocortical
teractions has been derived, then the previous refere
must be generalized, and further investigation is required
decide whether EEG scatter can be distinguished from m
tiplicative noise.

A recent study with realistic EEG wave equatio
strongly suggests that if chaos exists in a deterministic lim
it does not survive in macroscopic stochastic neocortex@63#.
That is, it is important to include stochastic aspects, as a
from the statistics of synaptic and columnar interactions
any realistic description of macroscopic neocortex.
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2. Other systems

Experience using ASA on such multivariate nonlinear s
chastic systems has been gained by similar application
the approach used for SMNI. From 1986–1989, these m
ods of mathematical physics were utilized by a team of s
entists and officers to develop mathematical comparison
Janus computer combat simulations with exercise data f
the National Training Center~NTC!, developing a testable
theory of combat successfully baselined to empirical d
@59,64–68#.

This methodology has been applied to financial mark
@21,69–71# developing specific trading rules for Standa
and Poor’s 500~S&P 500! index to demonstrate the robus
ness of these mathematical and numerical algorithms.

III. MATHEMATICAL DEVELOPMENT

Fitting a multivariate nonlinear stochastic model to data
a necessary but not sufficient procedure in developing n
diagnostic software. Even an accurate model fit well to r
data may not be immediately useful to clinicians and exp
mental researchers. To fill this void, the powerful intuiti
basis of the mathematical physics used to develop SMNI
been utilized to describe the model in terms of rigorous C
that provide an immediate intuitive portrait of the EEG da
faithfully describing the neocortical system being measur
The CMI give an enhanced signal over the raw data,
given some insights into the underlying columnar inter
tions.

A. CMI, information, energy

In the first SMNI papers, it was noted that this approa
permitted the calculation of a true nonlinear nonequilibriu
‘‘information’’ entity at columnar scales. With reference to
steady stateP̄(M̃ ) for a short-time Gaussian-Markovian co
ditional probability distributionP of variablesM̃ , when it

exists, an analytic definition of the information gainŶ in
stateP̃(M̃ ) over the entire neocortical volume is defined
@72,73#

Ŷ@ P̃#5E •••E DM̃ P̃ln~ P̃/ P̄!,

DM5~2pĝ0
2Dt !21/2)

s51

u

~2pĝs
2Dt !21/2dMs , ~1!

where a path integral is defined such that all intermedia
time values ofM̄ appearing in the folded short-time distr
butions P̃ are integrated over. This is quite general for a
system that can be described as Gaussian-Markovian@74#,
even if only in the short-time limit, e.g., the SMNI theory

As time evolves, the distribution likely no longer behav
in a Gaussian manner, and the apparent simplicity of
short-time distribution must be supplanted by numerical c
culations. The Feynman Lagrangian is written in the m
point discretization, for a specific mesocolumn correspo
ing to

M ~ t̄ s!5 1
2 @M ~ ts11!1M ~ ts!#. ~2!
-
of
h-
i-
of
m

a

ts

s
w
l
i-

as
I
,
d.
d
-

h

-

e
l-
-
-

This discretization defines a covariant LagrangianLF that
possesses a variational principle for arbitrary noise, and
explicitly portrays the underlying Riemannian geometry
duced by the metric tensorgGG8, calculated to be the invers
of the covariance matrixgGG8. Using the Einstein summa
tion convention,

P5E •••E DM expS 2(
s50

u

DtLFsD ,
DM5g01

1/2~2pDt !2Q/2)
s51

u

gs1

1/2)
G51

Q

~2pDt !21/2dMs
G ,

E dMs
G→(

i51

NG

DM is
G , M0

G5Mt0
G , Mu11

G 5Mt
G ,

LF5 1
2 ~dMG/dt2hG!gGG8~dM

G8/dt2hG8!

1 1
2h

G
;G1R/62V,

~••• ! ,G5
]~••• !

]MG ,

hG5gG2 1
2g

21/2~g1/2gGG8! ,G8,

gGG85~gGG8!21,

gs@M
G~ t̄ s!, t̄ s#5det~gGG8!s , gs1

5gs@Ms11
G , t̄ s#,

hG;G5h,G
G 1GGF

F hG5g21/2~g1/2hG! ,G ,

GJK
F [gLF@JK,L#5gLF~gJL,K1gKL,J2gJK,L!,

R5gJLRJL5gJLgJKRFJKL ,

RFJKL5
1
2 ~gFK,JL2gJK,FL2gFL,JK1gJL,FK!

1gMN~GFK
M GJL

N 2GFL
M GJK

N !, ~3!

whereR is the Riemannian curvature, and the discretizat
is explicitly denoted in the mesh ofM is

G by i. If M is a field,
e.g., also dependent on a spatial variablex discretized by
n, then the variablesMs

G are increased toMs
Gn , e.g., as pre-

scribed for the macroscopic neocortex. The termR/6 in LF
includes a contribution ofR/12 from the WKB approxima-
tion to the same order of (Dt)3/2 @75#.

A prepoint discretization for the same probability dist
butionP gives a much simpler algebraic form,

M ~ t̄ s!5M ~ ts!,

L5 1
2 ~dMG/dt2gG!gGG8~dM

G8/dt2gG8!2V, ~4!

but the LagrangianL, so specified, does not satisfy a vari
tional principle useful for moderate to large noise; its as
ciated variational principle only provides information usef
in the weak-noise limit@76#. The neocortex presents a sy
tem of moderate noise. Still, this prepoint-discretized fo
has been quite useful in all systems examined thus far, s



ha
r

ke
le
o
e
ou
l o
es
he
i

as-

e,
ses
re-

m-
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ply requiring a somewhat finer numerical mesh. Note t
although integrations are indicated over a huge numbe
independent variables, i.e., as denoted bydMs

Gn , the physi-
cal interpretation afforded by statistical mechanics ma
these systems mathematically and physically manageab

It must be emphasized that the output need not be c
fined to complex algebraic forms or tables of numbers. B
causeFL possesses a variational principle, sets of cont
graphs, at different long-time epochs of the path integra
P, integrated over all its variables at all intermediate tim
give a visually intuitive and accurate decision aid to view t
dynamic evolution of the scenario. For example, as given
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Table I, this Lagrangian approach permits a quantitative
sessment of concepts usually only loosely defined.

These physical entities provide another form of intuitiv
but quantitatively precise, presentation of these analy
@68,77#. In this study, the above canonical momenta are
ferred to as canonical momenta indicators~CMI!.

In a prepoint discretization, where the Riemannian geo
etry is not explicit~but calculated in the first SMNI papers!,
the distributions of neuronal activitiesps i

is developed into

distributions for activity under an electrode siteP in terms of
a LagrangianL and threshold functionsFG,
P5)
G

PG@MG~r ;t1t!uMḠ~r 8;t !#5(
s j

dS (
jE

s j2ME~r ;t1t! D dS (
j I

s j2MI~r ;t1t! D)
j

N

ps j

')
G

~2ptgGG!21/2exp~2NtLG!5~2pt!21/2g1/2exp~2NtL !,

L5T2V, T5~2N!21~ṀG2gG!gGG8~Ṁ
G82gG8!, gG52t21~MG1NGtanhFG!,

gGG85~gGG8!
215dG

G8t21NGsech2FG, g5det~gGG8!, FG5
VG2nG8

uGuTG8
uGu

„p@~nG8
uGu

!21~fG8
uGu

!2#TG8
uGu
…

1/2,

TG8
uGu

5aG8
uGuNG81 1

2AG8
uGuMG81aG8

†uGuN†G81 1
2AG8

†uGuM†G81aG8
‡uGuN‡G81 1

2AG8
‡uGuM‡G8,

aG8
†G

5 1
2AG8

†G
1BG8

†G , AE
‡I5AI

‡E5AI
‡I5BE

‡I5BI
‡E5BI

‡I50, aE
‡E5 1

2AE
‡E1BE

‡E , ~5!
on-
, in

m-
of
of
is
tic
der

on

a-
where no sum is taken over repeateduGu, AG8
G andBG8

G are
macrocolumnar-averaged interneuronal synaptic efficac
nG8
G andfG8

G are averaged means and variances of contr
tions to neuronal electric polarizations,NG are the numbers
of excitatory and inhibitory neurons per minicolumn, and t
variables associated withMG, M†G, andM‡G relate to mul-
tiple scales of activities from minicolumns, between minic
umns within regions, and across regions, respectively.
nearest-neighbor interactionsV can be modeled in greate
detail by a stochastic mesoscopic neural network@14#. The
SMNI papers give more detail on this derivation.

In terms of the above variables, an energy or Hamilton
densityH can be defined,

H5T1V, ~6!

in terms of theMG andPG variables, and the path integral
now defined over all theDMG as well as over theDPG

variables.

B. Nonlinear string model

A mechanical-analog model, the string model, is deriv
explicitly for neocortical interactions using SMNI@12#. In
addition to providing overlap with current EEG paradigm
this defines a probability distribution of firing activity, whic
s,
-

-
e

n

d

,

can be used to further investigate the existence of other n
linear phenomena, e.g., bifurcations or chaotic behavior
brain states.

Previous SMNI studies have detailed that maximal nu
bers of attractors lie within the physical firing space
MG, consistent with experimentally observed capacities
auditory and visual STM, when a ‘‘centering’’ mechanism
enforced by shifting background conductivities of synap
interactions, consistent with experimental observations un
conditions of selective attention@4,6,15,16,78#. This leads to
an effect of having all attractors of the short-time distributi
lie along a diagonal line inMG space, effectively defining a

TABLE I. Descriptive concepts and their mathematical equiv
lents in a Lagrangian representation.

Concept Lagrangian equivalent

Momentum
PG5

]LF

](]MG/]t)
Mass

gGG85
]LF

](]MG/]t)](]MG8/]t)
Force ]LF

]MG

F5ma
dLF505

]LF

]MG2
]

]t

]LF

](]MG/]t)
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narrow parabolic trough containing these most likely firi
states. This essentially collapses the two-dimensionalMG

space down to a one-dimensional space of most importa
Thus, the predominant physics of short-term memory a

of ~short-fiber contribution to! EEG phenomena takes plac
in a narrow ‘‘parabolic trough’’ inMG space, roughly along
a diagonal line@4#. Here,G representsE or I , ME repre-
sents contributions to columnar firing from excitatory ne
rons, andMI represents contributions to columnar firin
from inhibitory neurons. The object of interest within a sho
refractory time,t, approximately 5 to 10 msec, is the La
grangianL for a mesocolumn, detailed above.tL can vary
by as much as a factor of 105 from the highest peak to th
lowest valley inMG space. Therefore, it is reasonable
assume that a single independent firing variable might off
crude description of this physics. Furthermore, the scalp
tential F can be considered to be a function of this firin
variable.~Here, ‘‘potential’’ refers to the electric potentia
not the potential term in the Lagrangian above.! In an abbre-
viated notation subscripting the time dependence,

F t2^^F&&5F~Mt
E ,Mt

I !

'a~Mt
E2^^ME&&!1b~Mt

I2^^MI&&!, ~7!

wherea andb are constants, and̂̂F&& and ^^MG&& repre-
sent typical minima in the trough. In the context of fittin
data to the dynamic variables, there are three effective c
stants,$a,b,f%,

F t2f5aMt
E1bMt

I . ~8!

The mesoscopic probability distributions,P, are scaled and
aggregated over this columnar firing space to obtain the m
roscopic probability distribution over the scalp-potent
space

PF@F#5E dMEdMIP@ME,MI #d„F2F8~ME,MI !…. ~9!

In the prepoint discretization, the postpointMG(t1Dt) mo-
ments are given by

m[^Fn2f&5a^ME&1b^MI&5agE1bgI ,

s2[^~Fn2f!2&2^Fn2f&25a2gEE1b2gII , ~10!

where theMG space driftsgG, and diffusionsgGG8, are
given above. Note that the macroscopic drifts and diffusio
of the F ’s are simply linearly related to the mesoscop
drifts and diffusions of theMG’s. For the prepointMG(t)
firings, the same linear relationship in terms of$f,a,b% is
assumed.

For the prepointME(t) firings, advantage is taken of th
parabolic trough derived for the STM Lagrangian, and

MI~ t !5cME~ t !, ~11!

where the slopec is set to the close approximate value d
termined by a detailed calculation of the centering mec
nism @15#,

AE
EME2AI

EMI'0. ~12!
e.
d

-

t

a
o-

n-

c-
l
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-
-

This permits a complete transformation fromMG variables
to F variables.

Similarly, as appearing in the modified threshold fac
FG, each regional influence from electrode sitem acting at
electrode siten, given by afferent firingsM‡E, is taken as

Mm→n
‡E 5dnMm

E~ t2Tm→n!, ~13!

wheredn are constants to be fitted at each electrode site,
Tm→n are the delay times estimated above for interelectr
signal propagation, based on anatomical knowledge of
neocortex and of velocities of propagation of action pote
tials of long-ranged fibers, typically on the order of one
several multiples oft55 msec. Some terms in whichd di-
rectly affects the shifts of synaptic parametersBG8

G when
calculating the centering mechanism also contain lo
ranged efficacies~inverse conductivities! BE8

* E . Therefore,
the latter were kept fixed with the other electrical-chemi
synaptic parameters during these fits. Future fits will exp
ment taking theT’s as parameters.

This defines the conditional probability distribution fo
the measured scalp potentialFn ,

Pn@Fn~ t1Dt !uFn~ t !#5
1

~2ps2Dt !1/2
exp~2LnDt !,

Ln5
1

2s2 ~Fn2m!2. ~14!

The probability distribution for all electrodes is taken to
the product of all these distributions

P5)
n

Pn , L5(
n

Ln . ~15!

Note that the belief in the dipole or nonlinear-string mode
being invoked. The model SMNI, derived forP@MG(t

1Dt)uMḠ(t)#, is for a macrocolumnar-averaged minico
umn; hence, it is expected to be a reasonable approxima
to represent a macrocolumn, scaled to its contribution
Fn . Hence,L is used to represent this macroscopic regio
Lagrangian, scaled from its mesoscopic mesocolumnar co
terpart L. However, the above expression forPn uses the
dipole assumption to also use this expression to repre
several to many macrocolumns present in a region unde
electrode: A macrocolumn has a spatial extent of abou
mm. It is often argued that typically several macrocolum
firing coherently account for the electric potentials measu
by one scalp electrode@79#. Then, this model is being teste
to see if the potential will scale to a representative macroc
umn. The results presented here seem to confirm that
approximation is in fact quite reasonable.

The parabolic trough described above justifies a form

PF5~2ps2Dt !21/2expS 2
Dt

2s2E dx LFD ,
LF5

a

2
u]F/]tu21

b

2
u]F/]xu21

g

2
uFu21F~F!, ~16!
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4584 55LESTER INGBER
whereF(F) contains nonlinearities away from the troug
s2 is on the order ofN given the derivation ofL above, and
the integral overx is taken over the spatial region of interes
In general, there also will be terms linear in]F/]t and in
]F/]x. ~This corrects a typographical error that appears
several papers@12,13,17,19#, incorrectly giving the order of
s2 as 1/N. The orderN was first derived@13# from s2 being
expressed as a sum over theE andI diffusion given above.!

Previous calculations of EEG phenomena@5#, show that
the short-fiber contribution to thea frequency and the move
ment of attention across the visual field are consistent w
the assumption that the EEG physics is derived from an
erage over the fluctuations of the system, e.g., represente
s in the above equation. That is, this is described by
Euler-Lagrange equations derived from the variational p
ciple possessed byLF ~essentially the counterpart to forc
equals mass times acceleration!, more properly by the
‘‘midpoint-discretized’’ FeynmanLF , with its Reimannian
terms@2,3,11#.

C. CMI sensitivity

In the SMNI approach, ‘‘information’’ is a concept we
defined in terms of the probability eigenfunctions
electrical-chemical activity of this Lagrangian. The pat
integral formulation presents an accurate intuitive picture
an initial probability distribution of patterns of firings bein
filtered by the~exponential of the! Lagrangian, resulting in a
final probability distribution of patterns of firing.

The utility of a measure of information has been noted
other investigators. For example, there have been attemp
use information as an index of EEG activity@80,81#. These
attempts have focused on the concept of ‘‘mutual inform
tion’’ to find correlations of EEG activity under differen
electrodes. Other investigators have looked at simula
models of neurons to extract information as a measure
complexity of information processing@82#. Some other in-
vestigators have examined the utility of the energy density
a viable measure of information processing STM paradig
@83#.

The SMNI approach at the outset recognizes that,
most brain states of late latency, at least a subset of reg
being measured by several electrodes is indeed to be co
ered as one system, and their interactions are to be explic
by mathematical or physical modeling of the underlying ne
ronal processes. Then, it is not relevant to compare j
distributions over a set of electrodes with marginal distrib
tions over individual electrodes.

In the context of the present SMNI study, the CMI tran
form covariantly under Riemannian transformations, but
more sensitive measures of neocortical activity than ot
invariants, such as the energy density, effectively the squ
of the CMI, or the information which also effectively is i
terms of the square of the CMI~essentially path integral
over quantities proportional to the energy times a factor of
exponential including the energy as an argument!. Neither
the energy or the information give details of the compone
as do the CMI. EEG is measuring a quite oscillatory syst
and the relative signs of such activity are quite importa
The information and energy densities are calculated
printed out after ASA fits along with the CMI.
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IV. SMNI APPLICATIONS TO INDIVIDUAL EEG

A. Data

EEG spontaneous and evoked potential~EP! data from a
multielectrode array under a variety of conditions was c
lected at several centers in the United States, sponsore
the National Institute on Alcohol Abuse and Alcoholis
~NIAAA ! project. The earlier 1991 study used only averag
EP data@84#. These experiments, performed on carefully s
lected sets of subjects, suggest a genetic predispositio
alcoholism that is strongly correlated to EEG AEP respon
to patterned targets.

It is clear that the author is not an expert in the clinic
aspects of these alcoholism studies. It suffices for this st
that the data used is clean raw EEG data, and that th
SMNI, CMI, and ASA techniques can and should be us
and tested on other sources of EEG data as well.

Each set of results is presented with six figures, labeled
@$alcoholicucontrol%, $stimulus 1umatchunomatch%, subject,
$potentialumomenta%#, abbreviated to$auc%2$1umun%2sub-
ject.$potumom% where match or no match was performed f
stimulus 2 after 3.2 sec of a presentation of stimulus 1@84#.
Data includes ten trials of 69 epochs each between 150
400 msec after presentation. For each subject run, after
ting 28 parameters with ASA, epoch by epoch averages
developed of the raw data and of the multivariate SM
CMI. It was noted that much poorer fits were achieved wh
the ‘‘centering’’ mechanism@4,6#, driving multiple attractors
into the physical firing regions bounded byNG<MG<NG,
was turned off and the denominators inFG were set to con-
stants, confirming the importance of using the full SMN
model. All stimuli were presented for 300 msec. For e
ample, c2m2co2c0000337.pot is a figure.

Note that the subject number also includes t
$alcoholicucontrol% tag, but this tag was added just to a
sorting of files~as there are contribution from co2 and co
subjects!. Each figure contains graphs superimposed for
electrode sites~out of 64 in the data! which have been mod
eled by SMNI using a circuitry given in Table II of fronta
sites~F3 and F4! feeding temporal~sides of head T7 and T8!
and parietal~top of head P7 and P8! sites, where odd-

TABLE II. Circuitry of long-ranged fibers across most releva
electrode sites and their assumed time delays in units of 3.
msec.

Site Contributions from Time delays~3.906 msec!

F3
F4
T7 F3 1
T7 T8 1
T8 F4 1
T8 T7 1
P7 T7 1
P7 P8 1
P7 F3 2
P8 T8 1
P8 P7 1
P8 F4 2
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55 4585STATISTICAL MECHANICS OF NEOCORTICAL . . .
numbered~even-numbered! sites refer to the left~right!
brain.

B. ASA tuning

A three-stage optimization was performed for each of
data sets in$a2 n, a2 m, a2 n, c2 1, c2 m, c2 n% of ten sub-
jects. As described previously, each of these data sets
five parameters for each SMNI electrode-site model
$F3, F4, T7, T8, P7, P8%, i.e., 30 parameters for each of th
optimization runs, to be fit to over 400 pieces of potent
data.

For each stage generated in the fit, prior to calculating
Lagrangian, tests were performed to ensure that all sh
ranged and long-ranged firings lay in their physical bou
aries. When this test failed, the generated state was sim
excluded from the parameter space for further considerat
This is a standard simulated-annealing technique to ha
complex constraints.

1. First-stage optimization

The first-stage optimization used ASA, version 13
tuned to give reasonable performance by examining inter
diate results of several sample runs in detail. Table III giv
those options changed from their defaults.~See the Appendix
for a discussion of ASA options.!

The ranges of the parameters were decided as follo
The ranges of the strength of the long-range connectivi
dn were from 0 to 1. The ranges of the$a,b,c% parameters
were decided by using minimum and maximum values
MG andM‡G firings to keep the potential variable within th
minimum and maximum values of the experimentally me
sured potential at each electrode site.

Using the above ASA options and ranges of parameter
was found that typically within several thousand genera
states, the global minimum was approached within at le

TABLE III. ASA option changes from their defaults used
stage-one optimization.

Options Default Stage 1 use

Limit2Acceptances 10000 25000
Limit2Generated 99999 50000
Cost2Precision 1.0E-18 1.0E-9
Number2Cost2Samples 5 3
Cost2Parameter2Scale2Ratio 1.0 0.2
Acceptance2Frequency2Modulus 100 25
Generated2Frequency2Modulus 10000 10
Reanneal2Cost 1 4
Reanneal2Parameters 1 0
SMALL2FLOAT 1.0E-18 1.0E-30
ASA2LIB False True
QUENCH2COST False True
QUENCH2PARAMETERS False True
COST2FILE True False
NO2PARAM2TEMP2TEST False True
NO2COST2TEMP2TEST False True
TIME2CALC False True
ASA2PRINT2MORE False True
0

ad
n

l

e
rt-
-
ly
n.
le

,
e-
s

s.
s

f

-

it
d
st

one or two significant figures of the effective Lagrangi
~including the prefactor!. This estimate was based on fin
fits achieved with hundreds of thousands of generated sta
Runs were permitted to continue for 50 000 generated sta
This very rapid convergence in these 30-dimensional spa
was partially due to the invocation of the centering mec
nism.

Some tests with SMNI parameters off the diagonal
MG space, as established by the centering mechanism,
firmed that ASA converged back to this diagonal, but requ
ing many more generated states. Of course, an examina
of the Lagrangian shows this trivially, as noted in previo
papers@3,4#, wherein the Lagrangian values were on the
der of 105t21, compared to 1022–1023t21 along the diag-
onal established by the centering mechanism.

2. Second-stage optimization

The second-stage optimization was invoked to minim
the number of generated states that would have been req
if only the first-stage optimization were performed. Table
gives the changes made in the options from stage one
stage two.

The final stage-one parameters were used as the in
starting parameters for stage two.~At high annealing or
quenching temperatures at the start of an SA run, it typica
is not important as to what the initial values of the para
eters are, provided of course that they satisfy all constrai
etc.! The second-stage minimum of each parameter was c
sen to be the maximum lower bound of the first-stage m
mum and a 20% increase of that minimum. The second-s
maximum of each parameter was chosen to be the minim
upper bound of the first-stage maximum and a 20% decre
of that maximum. Extreme quenching was turned on for
parameters~not for the cost temperature!, at values of the
parameter dimension of 30, increased from 1~for rigorous
annealing!. This worked very well, typically achieving the
global minimum with 1000 generated states. Runs were p
mitted to continue for 10 000 generated states.

3. Third-stage optimization

The third-stage optimization used a quasilocal code,
Broyden-Fletcher-Goldfarb-Shanno~BFGS! algorithm @85#,
to gain an extra two or three figures of precision in the glo
minimum. This typically took several hundred states, a
runs were permitted to continue for 500 generated sta
Constraints were enforced by the method of penalties ad
to the cost function outside the constraints.

The BFGS code typically got stuck in a local minimu
quite early if invoked just after the first-stage optimizatio
~There never was a reasonable chance of getting close to

TABLE IV. ASA option changes from their use in stage-one f
stage-two optimization.

Options Stage 2 changes

Limit2Acceptances 5000
Limit2Generated 10000
User2Initial2Parameters True
User2Quench2Param2Scale@.# 30
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4586 55LESTER INGBER
global minimum using the BFGS code as a first-stage o
mizer.! These fits were much more efficient than those in
previous 1991 study@13#, where VFSR, the precursor cod
to ASA, was used for a long stage-one optimization wh
was then turned over to BFGS.

C. Results

Figures 1–3 compares the CMI to raw data for an al
holic subject for the a21, a2m, and a2n paradigms. Figures
4–6 gives similar comparisons for a control subject for
c21, c2m, and c2n paradigms. The SMNI CMI give bette
signal-to-noise resolution than the raw data, especially c
paring the significant matching tasks between the control
the alcoholic groups, e.g., the c2m and a2m paradigms. The
CMI can be processed further as is the raw data, and
used to calculate ‘‘energy’’ and ‘‘information-entropy’’ den
sities. Similar results are seen for other subjects@94#.

V. CONCLUSIONS

A. CMI and linear models

It is clear that the CMI follow the measured potent
variables closely. In large part, this is due to the promin
attractors near the firing statesMG being close to their ori-
gins, resulting in moderate threshold functionsFG in these
regions. This keeps the term in the drifts proportional
tanhFG near its lowest values, yielding values of the drifts
the order of the time derivatives of the potentials. The dif
sions, proportional to sechFG, also do not fluctuate to very
large values.

However, when the feedback among potentials un
electrode sites are strong, leading to enhanced~nonlinear!
changes in the drifts and diffusions, then these do cause
tively largest signals in the CMI relative to those appear
in the raw potentials. Thus, these effects are strongest in
c2m sets of data, where the control~normal! subjects dem-
onstrate more intense circuitry interactions among electr
sites during the matching paradigm.

These results also support independent studies of pr
rily long-ranged EEG activity, that have concluded that EE
many times appears to demonstrate quasilinear interac
@39,86#. However, it must be noted that this is only tru
within the confines of an attractor of highly nonlinear sho
ranged columnar interactions. It requires some effort, e
global optimization of a robust multivariate stochastic no
linear system to achieve finding this attractor. Theoretica
using the SMNI model, this is performed using the AS
code. Presumably, the neocortical system utilizes ne
modular controls to achieve this attractor state@55,78#, as
suggested in early SMNI studies@3,4#.

B. CMI features

Essential features of the SMNI CMI approach are~a! a
realistic SMNI model, clearly capable of modeling EEG ph
nomena, is used, including both long-ranged columnar in
actions across electrode sites and short-ranged columna
teractions under each electrode site,~b! the data is used raw
for the nonlinear model, and only after the fits are mome
~averages and variances! taken of the derived CMI indica
tors; this is unlike other studies that most often start w
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averaged potential data, and~c! a novel and sensitive mea-
sure CMI, is used, which has been shown to be successful
enhancing resolution of signals in another stochastic multi
variate time series system, financial markets@21,22#. As was
performed in those studies, future SMNI projects can simi
larly use recursive ASA optimization, with an inner-shell
fitting CMI of subjects’ EEG, embedded in an outer shell of

FIG. 1. For the initial stimulusa21 paradigm for alcoholic sub-
ject co2a0000364, plots are given of activities under six electrode
of the CMI in the upper figure, and of the electric potential in the
lower figure.
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parametrized customized clinician’sAI-type rules acting on
the CMI, to create supplemental decision aids.

Canonical momenta offer an intuitive yet detailed coord
nate system of some complex systems amenable to mode
by methods of nonlinear nonequilibrium multivariate stati
tical mechanics. These can be used as reasonable indica
of new and/or strong trends of behavior, upon which reaso
able decisions and actions can be based, and therefore ca

FIG. 2. For the match second stimulusa2m paradigm for alco-
holic subject co2a0000364, plots are given of activities under s
electrodes of the CMI in the upper figure, and of the electric pote
tial in the lower figure.
-
ing
-
tors
n-
be

considered as important supplemental aids to other clinica
indicators.

C. CMI and source localization

Global ASA optimization, fitting the nonlinearities inher-
ent in the synergistic contributions from short-ranged colum-
nar firings and from long-ranged fibers, makes it possible to

ix
-

FIG. 3. For the no-match second stimulusa2n paradigm for
alcoholic subject co2a0000364, plots are given of activities under
six electrodes of the CMI in the upper figure, and of the electric
potential in the lower figure.
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disentangle their contributions to some specific electrode c
cuitries among columnar firings under regions separated
cm, at least to the degree that the CMI clearly offer super
signal to noise than the raw data. Thus this paper at le
establishes the utility of the CMI for EEG analyses, whic
can be used to complement other EEG modeling techniqu
In this paper, a plausible circuitry was first hypothesized~by
a group of experts!, and it remains to be seen just how man

FIG. 4. For the initial stimulusc21 paradigm for control subject
co2c0000337, plots are given of activities under six electrodes
the CMI in the upper figure, and of the electric potential in th
lower figure.
r-
y
r
st

s.

more electrodes can be added to such studies with the g
being to have ASA fits determine the optimal circuitry.

It is clear that future SMNI projects should integrate cu
rent modeling technologies together with the CMI. For e
ample, one approach for adding CMI to this set of too
would be to use source-localization techniques to gener
simulated macrocolumnar cortical potentials~effectively a
best fit of source-generated potentials to raw scalp data! to

of
FIG. 5. For the match second stimulusc2m paradigm for con-

trol subject co2c0000337, plots are given of activities under s
electrodes of the CMI in the upper figure, and of the electric pote
tial in the lower figure.
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determine the CMI. The CMI then can provide further dis
entanglement of short-ranged and long-ranged interactions
determine most likely circuit dynamics. Since source loca
ization often is a nonunique process, this may provide
iterative approach to aid finer source localization. That i
SMNI is a nonlinear stochastic model based on realistic ne
ronal interactions, and it is reasonable to assume that

FIG. 6. For the no-match second stimulusc2n paradigm for
control subject co2c0000337, plots are given of activities under s
electrodes of the CMI in the upper figure, and of the electric pote
tial in the lower figure.
-
to
l-
n
,
u-
he

derived CMI add much additional information to these loc
ization analyses.

D. SMNI features

Sets of EEG data taken during selective attention ta
have been fit using parameters either set to experimen
observed values, or have been fit within experimentally
served values. The ranges of columnar firings are consis
with a centering mechanism derived for STM in earlier p
pers.

These results, in addition to their importance in reas
ably modeling EEG with SMNI, also have a deeper theor
ical importance with respect to the scaling of neocorti
mechanisms of interaction across disparate spatial scales
behavioral phenomena: As has been pointed out previou
SMNI has given experimental support to the derivation
the mesoscopic probability distribution, illustrating comm
forms of interactions between their entities, i.e., neurons
columns of neurons, respectively. The nonlinear thresh
factors are defined in terms of electrical-chemical synap
and neuronal parameters all lying within their experimenta
observed ranges. It also was noted that the most likely
jectories of the mesoscopic probability distribution, rep
senting averages over columnar domains, give a descrip
of the systematics of macroscopic EEG in accordance w
experimental observations. It has been demonstrated tha
macroscopic regional probability distribution can be deriv
to have the same functional form as the mesoscopic distr
tion, where the macroscopic drifts and diffusions of the p
tentials described by theF ’s are simply linearly related to
the ~nonlinear! mesoscopic drifts and diffusions of the co
lumnar firing states given by theMG’s. Then, this macro-
scopic probability distribution gives a reasonable descript
of experimentally observed EEG.

The theoretical and experimental importance of spec
scaling of interactions in the neocortex has been quan
tively demonstrated on individual brains. The explicit alg
braic form of the probability distribution for mesoscopic c
lumnar interactions is driven by a nonlinear threshold fac
of the same form taken to describe microscopic neuro
interactions, in terms of electrical-chemical synaptic a
neuronal parameters all lying within their experimentally o
served ranges; these threshold factors largely determine
nature of the drifts and diffusions of the system. This me
scopic probability distribution has successfully describ
STM phenomena and, when used as a basis to derive
most likely trajectories using the Euler-Lagrange variatio
equations, it also has described the systematics of EEG
nomena. In this paper, the mesoscopic form of the full pr
ability distribution has been taken more seriously for mac
scopic interactions, deriving macroscopic drifts a
diffusions linearly related to sums of their~nonlinear! meso-
scopic counterparts, scaling its variables to describe inte
tions among regional interactions correlated with obser
electrical activities measured by electrode recordings
scalp EEG, with apparent success. These results give st
quantitative support for an accurate intuitive picture, portra
ing neocortical interactions as having common algebraic
physics mechanisms that scale across quite disparate sp
scales and functional or behavioral phenomena, i.e., des

ix
-
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ing interactions among neurons, columns of neurons,
regional masses of neurons.

E. Summary

SMNI is a reasonable approach to extracting more ‘‘s
nal’’ out of the ‘‘noise’’ in EEG data, in terms of physica
dynamical variables, than by merely performing regress
statistical analyses on collateral variables. To learn m
about complex systems, inevitably functional models m
be formed to represent huge sets of data. Indeed, mode
phenomena is as much a cornerstone of 20th century sci
as is collection of empirical data@87#.

It seems reasonable to speculate on the evolutionary
sirability of developing Gaussian-Markovian statistics at
mesoscopic columnar scale from microscopic neuronal in
actions, and maintaining this type of system up to the m
roscopic regional scale. That is, this permits maximal p
cessing of information@73#. There is much work to be done
but modern methods of statistical mechanics have helpe
point the way to promising approaches.
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APPENDIX: ADAPTIVE SIMULATED ANNEALING „ASA…

1. General description

Simulated annealing~SA! was developed in 1983 to dea
with highly nonlinear problems@88#, as an extension of a
Monte Carlo importance-sampling technique developed
1953 for chemical physics problems. It helps to visualize
problems presented by such complex systems as a
graphical terrain. For example, consider a mountain ran
with two ‘‘parameters,’’ e.g., along the North-South an
East-West directions, with the goal to find the lowest val
in this terrain. SA approaches this problem similar to usin
bouncing ball that can bounce over mountains from valley
valley. Start at a high ‘‘temperature,’’ where the temperat
is an SA parameter that mimics the effect of a fast mov
particle in a hot object like a hot molten metal, thereby p
mitting the ball to make very high bounces and being able
bounce over any mountain to access any valley, gi
enough bounces. As the temperature is made relati
colder, the ball cannot bounce so high, and it also can s
to become trapped in relatively smaller ranges of valleys

Imagine that a mountain range is aptly described b
‘‘cost function.’’ Define probability distributions of the two
directional parameters, called generating distributions si
they generate possible valleys or states to explore. De
another distribution, called the acceptance distributi
which depends on the difference of cost functions of
present generated valley to be explored and the last s
lowest valley. The acceptance distribution decides prob
listically whether to stay in a new lower valley or to boun
d
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out of it. All the generating and acceptance distributions
pend on temperatures.

In 1984@89#, it was established that SA possessed a pr
that, by carefully controlling the rates of cooling of temper
tures, it could statistically find the best minimum, e.g., t
lowest valley of our example above. This was good news
people trying to solve hard problems which could not
solved by other algorithms. The bad news was that the g
antee was only good if they were willing to run SA foreve
In 1987, a method of fast annealing~FA! was developed
@90#, which permitted lowering the temperature expone
tially faster, thereby statistically guaranteeing that the mi
mum could be found in some finite time. However, that tim
still could be quite long. Shortly thereafter, very fast sim
lated reannealing was developed@24#, now called adaptive
simulated annealing, which is exponentially faster than F

ASA has been applied to many problems by many peo
in many disciplines@26,27,91#. The feedback of many user
regularly scrutinizing the source code ensures its sound
as it becomes more flexible and powerful@95#.

2. Mathematical outline

ASA considers a parameterak
i in dimensioni generated

at annealing timek with the range

ak
i P@Ai ,Bi #, ~A1!

calculated with the random variableyi ,

ak11
i 5ak

i 1yi~Bi2Ai !,

yiP@21,1#. ~A2!

The generating functiongT(y) is defined,

gT~y!5)
i51

D
1

2~ uyi u1Ti !ln~111/Ti !
[)

i51

D

gT
i ~yi !, ~A3!

where the subscripti onTi specifies the parameter index, an
the k dependence inTi(k) for the annealing schedule ha
been dropped for brevity. Its cumulative probability distrib
tion is

GT~y!5E
21

y1

•••E
21

yD

dy81•••dy8DgT~y8![)
i51

D

GT
i ~yi !,

GT
i ~yi !5

1

2
1
sgn~yi !

2

ln~11uyi u/Ti !
ln~111/Ti !

. ~A4!

yi is generated from aui from the uniform distribution

uiPU@0,1#,

yi5sgn~ui2 1
2 !Ti@~111/Ti !

u2ui21u21#. ~A5!

It is straightforward to calculate that for an annealing sch
ule for Ti

Ti~k!5T0iexp~2cik
1/D!, ~A6!

a global minima statistically can be obtained. That is,
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(
k0

`

gk'(
k0

` F)
i51

D
1

2uyi uci
G1k5`. ~A7!

Control can be taken overci , such that

Tf i5T0iexp~2mi ! when kf5exp~ni !,

ci5miexp~2ni /D !, ~A8!

wheremi and ni can be considered ‘‘free’’ parameters
help tune ASA for specific problems.

3. ASA options

ASA has over 100 options available for tuning. A few a
most relevant to this project.

a. Reannealing

Whenever doing a multidimensional search in the cou
of a complex nonlinear physical problem, inevitably o
must deal with different changing sensitivities of thea i in
the search. At any given annealing time, the range o
which the relatively insensitive parameters are be
searched can be ‘‘stretched out’’ relative to the ranges of
more sensitive parameters. This can be accomplished by
riodically rescaling the annealing timek, essentially rean-
nealing, every hundred or so acceptance events~or at some
user-defined modulus of the number of accepted or gener
states!, in terms of the sensitivitiessi calculated at the mos
current minimum value of the cost function,C,

si5]C/]a i . ~A9!

In terms of the largestsi5smax, a default rescaling is per
formed for eachki of each parameter dimension, whereby
new indexki8 is calculated from eachki ,

ki→ki8 , Tik8
8 5Tik~smax/si !,

ki85@ ln~Ti0 /Tik8!/ci #
D. ~A10!

Ti0 is set to unity to begin the search, which is ample to sp
each parameter dimension.

b. Quenching

Another adaptive feature of ASA is its ability to perfor
quenching in a methodical fashion. This is applied by not
that the temperature schedule above can be redefined a

Ti~ki !5T0iexp~2ciki
Qi /D!,

ci5miexp~2niQi /D !, ~A11!

in terms of the ‘‘quenching factor’’Qi . The sampling proof
fails if Qi.1 as

(
k

)
D

1/kQi /D5(
k
1/kQi,`. ~A12!
e

r
g
e
e-

ted

n

g

This simple calculation shows how the ‘‘curse of dimensio
ality’’ arises, and also gives a possible way of living wi
this disease. In ASA, the influence of large dimensions
comes clearly focused on the exponential of the power ok
being 1/D, as the annealing required to properly sample
space becomes prohibitively slow. So, if resources canno
committed to properly sample the space, then for some
tems perhaps the next best procedure may be to turn
quenching, wherebyQi can become on the order of the siz
of number of dimensions.

The scale of the power of 1/D temperature schedule use
for the acceptance function can be altered in a similar fa
ion. However, this does not affect the annealing proof
ASA, and so this may be used without damaging the sa
pling property.

c. Self-optimization

If not much information is known about a particular sy
tem, if the ASA defaults do not seem to work very well, a
if after a bit of experimentation it still is not clear how t
select values for some of the ASA options, then t
SELF2OPTIMIZE options can be very useful. This sets up
top level search on the ASA options themselves, using cr
ria of the system as its own cost function, e.g., the best
tained optimal value of the system’s cost function~the cost
function for the actual problem to be solved! for each given
set of top level options, or the number of generated sta
required to reach a given value of the system’s cost funct
etc. Since this can consume a lot of CPU resources, i
recommended that only a few ASA options and a sca
down system cost function or system data be selected for
options.

Even if good results are being attained by AS
SELF2OPTIMIZE can be used to find a more efficient set
ASA options. Self-optimization of such parameters can
very useful for production runs of complex systems.

d. Parallel code

It is quite difficult to directly parallelize an SA algorithm
@26#, e.g., without incurring very restrictive constraints o
temperature schedules@92#, or violating an associated sam
pling proof @93#. However, the fat tail of ASA permits par
allelization of developing generated states prior to subjec
them to the acceptance test@14#. The ASA2PARALLEL op-
tions provide parameters to easily parallelize the code, us
various implementations, e.g., parallel virtual machin
shared memory, etc.

The scale of parallelization afforded by ASA, withou
violating its sampling proof, is given by a typical ratio of th
number of generated to accepted states. Several exper
parallelization suggest that massive parallelization, e.g.,
the order of the human brain, may take place quite far i
the future, that this might be somewhat less useful for ma
applications than previously thought, and that most use
scales of parallelization might be on scales of order 10
1000. Depending on the specific problem, such scales
common in ASA optimization, and the ASA code can impl
ment such parallelization.
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